954 research outputs found

    A Partition-Based Implementation of the Relaxed ADMM for Distributed Convex Optimization over Lossy Networks

    Full text link
    In this paper we propose a distributed implementation of the relaxed Alternating Direction Method of Multipliers algorithm (R-ADMM) for optimization of a separable convex cost function, whose terms are stored by a set of interacting agents, one for each agent. Specifically the local cost stored by each node is in general a function of both the state of the node and the states of its neighbors, a framework that we refer to as `partition-based' optimization. This framework presents a great flexibility and can be adapted to a large number of different applications. We show that the partition-based R-ADMM algorithm we introduce is linked to the relaxed Peaceman-Rachford Splitting (R-PRS) operator which, historically, has been introduced in the literature to find the zeros of sum of functions. Interestingly, making use of non expansive operator theory, the proposed algorithm is shown to be provably robust against random packet losses that might occur in the communication between neighboring nodes. Finally, the effectiveness of the proposed algorithm is confirmed by a set of compelling numerical simulations run over random geometric graphs subject to i.i.d. random packet losses.Comment: Full version of the paper to be presented at Conference on Decision and Control (CDC) 201

    Asynchronous Distributed Optimization over Lossy Networks via Relaxed ADMM: Stability and Linear Convergence

    Full text link
    In this work we focus on the problem of minimizing the sum of convex cost functions in a distributed fashion over a peer-to-peer network. In particular, we are interested in the case in which communications between nodes are prone to failures and the agents are not synchronized among themselves. We address the problem proposing a modified version of the relaxed ADMM, which corresponds to the Peaceman-Rachford splitting method applied to the dual. By exploiting results from operator theory, we are able to prove the almost sure convergence of the proposed algorithm under general assumptions on the distribution of communication loss and node activation events. By further assuming the cost functions to be strongly convex, we prove the linear convergence of the algorithm in mean to a neighborhood of the optimal solution, and provide an upper bound to the convergence rate. Finally, we present numerical results testing the proposed method in different scenarios.Comment: To appear in IEEE Transactions on Automatic Contro

    Multi-agents adaptive estimation and coverage control using Gaussian regression

    Full text link
    We consider a scenario where the aim of a group of agents is to perform the optimal coverage of a region according to a sensory function. In particular, centroidal Voronoi partitions have to be computed. The difficulty of the task is that the sensory function is unknown and has to be reconstructed on line from noisy measurements. Hence, estimation and coverage needs to be performed at the same time. We cast the problem in a Bayesian regression framework, where the sensory function is seen as a Gaussian random field. Then, we design a set of control inputs which try to well balance coverage and estimation, also discussing convergence properties of the algorithm. Numerical experiments show the effectivness of the new approach

    A study on the impact of AL-FEC techniques on TV over IP Quality of Experience

    Get PDF
    Abstract In this contribution, an evaluation of the effectiveness of Application Layer-Forward Error Correction (AL-FEC) scheme in video communications over unreliable channels is presented. In literature, several AL-FEC techniques for reducing the effect of noisy transmission on multimedia communication have been adopted. Recently, their use has been proposed for inclusion in TV over IP broadcasting international standards. The objective of the analysis performed in this paper is to verify the effectiveness of AL-FEC techniques in terms of perceived Quality of Service (QoS) and more in general of Quality of Experience (QoE), and to evaluate the trade-off between AL-FEC redundancy and video quality degradation for a given packet loss ratio. To this goal, several channel error models are investigated (random i.i.d. losses, burst losses, and network congestions) on test sequences encoded at 2 and 4 Mbps. The perceived quality is evaluated by means of three quality metrics: the full-reference objective quality metric NTIA-VQM combined with the ITU-T Rec. G.1070, the full-reference DMOS-KPN metric, and the pixel-wise error comparison performed by using the PSNR distortion measure. A post-processing synchronization between the original and the reconstructed stream has also been designed for improving the fidelity of the performed quality measures. The experimental results show the effectiveness and the limits of the Application Layer protection schemes

    Coeliac Disease and Mast Cells

    Get PDF
    Over the last decades, there has been an impressive progress in our understanding of coeliac disease pathogenesis and it has become clear that the disorder is the final result of complex interactions of environmental, genetic, and immunological factors. Coeliac disease is now considered a prototype of T-cell-mediated disease characterized by loss of tolerance to dietary gluten and the targeted killing of enterocytes by T-cell receptor \u3b1\u3b2 intraepithelial lymphocytes. Accumulating evidence, however, indicates that the induction of a gluten-specific T helper-1 response must be preceded by the activation of the innate immune system. Mast cells are key players of the innate immune response and contribute to the pathogenesis of a multitude of diseases. Here, we review the results of studies aimed at investigating the role of mast cells in the pathogenesis of coeliac disease, showing that these cells increase in number during the progression of the disease and contribute to define a pro-inflammatory microenvironment

    Smart Grid State Estimation with PMUs Time Synchronization Errors

    Full text link
    We consider the problem of PMU-based state estimation combining information coming from ubiquitous power demand time series and only a limited number of PMUs. Conversely to recent literature in which synchrophasor devices are often assumed perfectly synchronized with the Coordinated Universal Time (UTC), we explicitly consider the presence of time-synchronization errors in the measurements due to different non-ideal causes such as imperfect satellite localization and internal clock inaccuracy. We propose a recursive Kalman-based algorithm which allows for the explicit offline computation of the expected performance and for the real-time compensation of possible frequency mismatches among different PMUs. Based on the IEEE C37.118.1 standard on PMUs, we test the proposed solution and compare it with alternative approaches on both synthetic data from the IEEE 123 node standard distribution feeder and real-field data from a small medium voltage distribution feeder located inside the EPFL campus in Lausanne.Comment: 10 page, 7 figure
    corecore